Углеродистая сталь пористый металл. Основные свойства углеродистых и легированных сталей

В наше время просто невозможно представить себе деятельность человека без использования продукции металлургической отрасли. Различные металлы и сплавы буквально заполонили нашу жизнь. Не стала исключением и сталь углеродистая, которая нашла свое активное применение практически во всех отраслях и сферах народного хозяйства. О ее свойствах, назначении и составе пойдет речь в данной статье.

Определение

Итак, в первую очередь укажем, что сталь углеродистая – сплав железа с углеродом. При этом содержание последнего элемента должно быть не более 2,14% . Отдельно стоит рассмотреть классификацию. Такая сталь может быть разделена по:

  • структуре;
  • способу получения;
  • степени раскисления;
  • качеству;
  • назначению.

Обо всем этом будет сказано ниже.

Структура сплава

Сталь углеродистая бывает:

  • доэвтектоидная (содержание углерода составляет менее 0,8%);
  • эвтектоидная (углерод имеет концентрацию 0,8%);
  • заэвтектоидная (углерода более 0,8%).

Такая градация позволяет определять свойства углеродистой стали.

Способы производства

Абсолютно любая сталь изначально в своей основе имеет чугун, который впоследствии перерабатывают по особой технологии. Сталь углеродистая может быть создана тремя основными методами:

  • конверторной плавкой;
  • мартеновской плавкой;
  • электротермической обработкой.

Получение стали в конвертере происходит благодаря продуванию расплавленного чугуна кислородом под давлением. Сам по себе конвертер – печь грушевидной формы, футерованная изнутри специальным огнеупорным кирпичом. В зависимости от того, какая кладка (динас SiO 2 или доломитная масса CaO и MgO) находится внутри конвертера, идет разделение этого способа на бессемеровский и томасовский.

Приготовление стали в мартеновской печи сводится к выжиганию углерода из чугуна кислородом, находящимся не только в воздухе, но и в оксидах железа, которые попадают в печь в виде металлолома и железной руды.

Мартеновский способ, в отличие от конверторного, предусматривает регулирование химического состава готового продукта на выходе путем внедрения металлических компонентов в требуемой пропорции. К сожалению, несмотря на свои достоинства, мартеновский способ получения стали сегодня уже неактуален по причине своей технологической отсталости и слишком большого количества вредных выбросов в окружающую среду.

В электротермических печах производится сталь самого высокого качества. Это возможно благодаря тому, что воздух в печь извне практически не поступает. За счет этого вредоносный монооксид железа почти не образуется, а именно он снижает свойства стали и загрязняет ее. Кроме того, температура в печи не опускается ниже 1650 °C, что, в свою очередь, позволяет удалять нежелательные примеси в виде фосфора и серы.

Шихта для таких печей бывает различной: чугун может преобладать по количеству, но иногда большую часть составляет металлический лом. Также есть возможность легирования стали очень тугоплавкими материалами – вольфрамом и молибденом. Пожалуй, единственным существенным недостатком такого метода производства стали можно считать его энергоемкость, поскольку на одну тонну выплавляемой массы может приходиться до 800 кВт/ч.

Химические компоненты

Состав углеродистой стали стоит рассмотреть более детально. Первоочередно укажем на углерод. Именно этот элемент оказывает прямое влияние на прочность и твердость стали: чем его больше, тем выше названные характеристики, пластичность же при этом снижается.

Марганец и кремний не являются теми составляющими, которые оказывают существенное влияние на свойства стали. В процессе плавки они вводятся с целью раскиления.

Крайне вредной примесью считается сера. Из-за нее сталь становится ломкой во время ее обработки давлением с предварительным подогревом. Также сера снижает прочность, стойкость к износу и коррозии.

Фосфор приводит к возникновению хладноломкости – хрупкости при низких температурах.

Феррит привносит в сталь мягкую и пластичную микроструктуру. Его антиподом является цементит – карбид железа, наращивающий твердость.

Виды термической обработки

Углеродистые стали, применение которых возможно почти везде, где человек осуществляет свою жизнедеятельность, способны существенно изменять свои механические свойства. Для этого следует выполнить термическую обработку, смысл которой заключается в изменении структуры стали во время нагрева, выдержке и последующем охлаждении на основании специального режима.

Существуют такие виды температурной обработки:

  • Отжиг – снижает твердость и измельчает зерна, повышает обрабатываемость, вязкость и пластичность, снижает внутренние напряжения, устраняет структурные неоднородности.
  • Нормализация – исправляет структуру перегретой и литой стали, устраняет сетку вторичного цементита в заэвтектоидной стали.
  • Закалка – позволяет получить высочайшую твердость и прочность.
  • Отпуск.

Дифференциация по назначению

Сталь углеродистая делится на две большие группы:

  • инструментальная;
  • конструкционная (выделяют обыкновенные, качественные и автоматные разновидности).

Обыкновенные стали маркируются буквами "Ст" и номером от 0 до 6. Все стали с номером марки от 1 до 4 производят кипящими, полуспокойными и спокойными. Номера 5 и 6 могут быть только спокойными или полуспокойными. Кроме того, эти стали делятся на три большие группы: А, Б, В.

  • Группа А. Чем выше номер в маркировке стали, тем больше прочность.
  • Группа Б. С увеличением номера повышается содержание углерода.
  • Группа В. Механические свойства соответствуют группе А, химический состав – группе Б аналогичного номера.

Наиболее часто в строительстве применяются типы Ст1 и Ст2. Именно эти марки задействованы при создании резервуаров, трубопроводов, колонн. Ст3 и Ст 4 актуальны для возведения конструкций, а также из них производится арматура для железобетона. Углеродистая сталь ГОСТ 380-2005 является основой для листового, круглого, двутаврового и швеллерного проката.

Качественные стали характеризуются дешевизной и качественностью. Маркируют их следующим образом: от 08 до 85 с приставкой в конце "ПС" (полуспокойная), "СП" (спокойная), "КП" (кипящая). Цифра показывают концентрацию углерода в сотых долях процента.

Инструментальные стали применяют для изготовления трех основных групп инструмента: режущего, измерительного, штампованного. Цифры в маркировке сигнализируют о содержании углерода в десятых долях процента.

Химикотермическое воздействие

Углеродистые и легированные стали могут быть подвержены специальным видам обработки.

Одним из них является цементация – процесс, представляющий собой диффузионное насыщение поверхностного слоя стали углеродом при нагреве в соответствующей среде. Конечной целью операции является получение высокой поверхностной твердости и износостойкости при вязкой сердцевине. Цементация также может происходить в твердом карбюрюзаторе, который является смесью древесного угля и углекислых солей.

Азотирование стали – процесс, заключающийся в диффузионном насыщении поверхностного слоя стали азотом. Данную процедуру проводят в атмосфере аммиака при температуре в пределах 500-700 градусов Цельсия. Азотирование проводят для получения поверхности детали, устойчивой к износу и коррозии и обладающей большой твердостью.

Борирование – верхний слой стали насыщают бором. Делается это для повышения износостойкости, жаростойкости и твердости.

Также для получения жаростойких поверхностей применяют алитирование – насыщение стали алюминием.

Легированные марки углеродистой стали

Эта большая группа делится на конструкционные, инструментальные и стали с особыми качествами. Первые применяются для изготовления зубчатых колес, втулок, шпилек и деталей, работающих в крайне сложных напряженных условиях. Кроме того, в эту группу входят пружинно-рессорные и шарикоподшипниковые стали.

Из инструментальных сталей производят режущий и измерительный инструмент.

Особые качества описанного материала проявляются в его окалино- и жаростойкости. Сюда же можно причислить и нержавеющие марки.

Заключение

Как вы уже, очевидно, поняли из всего вышесказанного, один из самых востребованных на сегодня материалов – углеродистая сталь (назначение ее имеет широкий спектр). Она является относительно недорогой основой для создания многих машин, механизмов, деталей, конструкций, зданий, сооружений и вообще многого из того, что нас с вами окружает. Мировыми лидерами по производству стали сейчас называют Китай, Японию, Германию, США. Именно эти страны задают тон в металлургии на планете.


    Железоуглеродистые сплавы - сталь и чугун. Процентное содержание углерода в стали

    Определение массовой доли углерода в стали и марки стали по ее структуре

    Возможность определения массовой доли углерода в стали по структуре, обусловливается тем обстоятельством, что структурные составляющие медленно охлажденной, т.е. находящейся в равновесном состоянии стали, содержат определенные и постоянные массовые доли углерода. При изменении доли углерода в такой стали в пределах данной структурной группы (доэвтектоидная, заэвтектоидная) изменяется только количественное соотношение структурных составляющих. Из этого вытекает, что определение массовой доли углерода может производиться только по равновесной структуре.

    Поскольку плотности структурных составляющих сталей близки, то соотношение их массовых долей можно заменить соотношением занимаемых ими площадей.

    В доэвтектоидных сталях массовая доля углерода определяется по

    где Fn – площадь поля зрения микроскопа, занимаемая перлитом, %; 0,8 – % С в перлите.

    Рассчитав массовую долю углерода заданной доэвтектоидной стали по формуле (3.1), можно по таблицам определить марку этой стали.

    Влияние примесей на свойства сталей

    В углеродистой стали кроме основных компонентов (железа и углерода) присутствует ряд примесей Мn, Si, S, P и др. Присутствие разных примесей объясняется соответствующими причинами. Мn и Si в десятых долях процента переходят в сталь в процессе ее раскисления; S и Р в сотых долях процента остаются в стали из-за трудности их полного удаления; Сr и Ni переходят в сталь из шихты, содержащей легированный металлический лом, и допускаются в количестве не более 0,3 % каждого. Таким образом, сталь фактически является многокомпонентным сплавом. Допустимые количества примесей в сталях регламентируются соответствующими стандартами. Примеси оказывают влияние на механические и технологические свойства стали. Так, например, Мп и Si повышают твердость и прочность, Р придает стали хладноломкость – хрупкость при нормальной и пониженных температурах, а S – горячеломкость (красноломкость) – хрупкость при температурах горячей обработки давлением. Поскольку в сталях допускаются небольшие количества примесей, то их влияние на свойства незначительно. Основным элементом, определяющим механические и технологические свойства стали, является углерод.

    Каждой марке углеродистой стали соответствуют регламентированные стандартами определенные пределы содержания углерода.

    Маркировка углеродистых сталей

    По назначению и качеству углеродистые стали классифицируются следующим образом:

    1. Стали конструкционные углеродистые обыкновенного качества содержат вредных примесей: серы до 0,05 %, а фосфора до 0,04 % (ГОСТ 380-94). Эти стали маркируются Ст0, Ст1кп, Ст1пс, Ст1сп и т.д. до Cт6 (табл. 3.1). Если после марки стоят буквы "кп" - это означает, что сталь кипящая, полностью нераскисленная (раскисляют только ферромарганцем). Если "сп" – сталь спокойная, получаемая полным раскисленнем (раскисляют ферромарганцем, ферросилицием и алюминием). Если "пс" – сталь полуспокойная промежуточного типа.

    Стали углеродистые обыкновенного качества широко применяются в

    строительстве. Из ряда марок изготавливают детали машиностроения. В судостроении применяются как корпусные, для малоответственных конструкций, деталей машин, механизмов и устройств судов и плавительных средств всех типов.

    2. Стали конструкционные углеродистые качественные (ГОСТ 1050-88).

    К сталям этой группы предъявляют более высокие требования относительно состава: меньшее содержание серы (менее 0,04 %) и фосфора (менее 0,035 %). Они маркируются двузначными цифрами, обозначающими среднюю массовую долю углерода в стали в сотых долях процента (табл. 3.2).

    Например, сталь 30 – углеродистая конструкционная качественная сталь со средней массовой долей углерода 0,3 %.

    Качественные конструкционные углеродистые стали широко применяются во всех отраслях машиностроения и в судостроении в частности.

    Низкоуглеродистые стали (08, 10, 15, 20, 25) обладают высокой пластичностью, но низкой прочностью. Стали 08, 10 используют для изготовления деталей холодной штамповкой и высадкой (трубки, колпачки). Стали 15, 20, 25 применяют для цементируемых и цианируемых деталей (втулки, валики, пальцы), работающих на износ и не испытывающих высоких нагрузок. Низкоуглеродистые качественные стали используют и для ответственных сварных конструкций.

    Среднеуглеродистые стали (30, 35, 40, 45, 50), обладающие после термической обработки хорошим комплексом механических свойств, применяются для изготовления деталей повышенной прочности (распределительных валов, шпинделей, штоков, плунжеров, осей, зубчатых колес).

    Высокоуглеродистые стали (55, 60) обладают более высокий прочностью, износостойкостью и упругими свойствами; применяются для деталей работающих в условиях трения при наличии высоких статических и вибрационных нагрузок. Из этих сталей изготавливают прокатные валки, шпиндели, диски сцепления, регулировочные шайбы и т.п.

    3.Стали углеродистые инструментальные качественные и высококачественные (ГОСТ 1435-90).

    Эти стали маркируются буквой У и следующей за ней цифрой, показывающей среднюю массовую долю углерода в десятых долях процента (табл. 3.3). Например, сталь У10 – инструментальная углеродистая качественная сталь со средней массовой долей углерода 1 %. Если в конце марки стоит буква "А", это означает, что сталь высококачественная, т.е. содержит меньше вредных примесей (серы менее 0,018 % и фосфора менее 0,025 %). Для режущего инструмента (фрезы, зенкеры, сверла, ножовки, напильники и т.п.) обычно применяют заэвтектоидные стали (У10, У11, У12, У13). Деревообрабатывающий инструмент, зубила, отвертки, топоры и тому подобное изготавливают из сталей У7 и У8.

    Табл. 3.1. Химический состав углеродистых конструкционных сталей

    обыкновенного качества по ГОСТ 380-94

    Марка стали

    Массовая доля элементов, %

    Табл. 3.3. Химический состав углеродистых инструментальных

    качественных и высококачественных сталей по ГОСТ 1435-90.

    Марки стали

    Массовая доля элементов, %

    studfiles.net

    Железоуглеродистые сплавы - сталь и чугун

    Наиболее широкое применение в современном машиностроении имеют железоуглеродистые сплавы - сталь и чугун.

    Сталь - это сплав железа с углеродом; содержание углерода в стали не превышает 2%.

    К сталям относятся:

      техническое железо,

      конструкционная и

      инструментальная сталь.

    Чугун - сплавы железа с углеродом, в которых содержание углерода превышает 2%. Среднее содержание углерода в чугуне 2,5-3,5%.

    Кроме железа и углерода, в сталях и чугунах присутствуют примеси:

      кремний и марганец в десятых долях процента (0,15- 0,60%)

      сера и фосфор в сотых долях процента (0,05-0,03%) каждого элемента.

    Сталь

    • проволоки,

    • таврового и уголкового железа,

      различного фасонного профиля,

      а также для многочисленных деталей в машиностроении: шестерни, оси, валы, шатуны, болты, молотки, кувалды и т.п.

    • зубила и др.

    Свойства стали зависят от содержания углерода. Чем больше углерода, тем сталь прочнее и тверже.

    Чугун

    Машиностроительный чугунприменяют для производства отливок всевозможных деталей машин.

    По составу и строению чугуны делятся на:

    Ковкий чугун

    Ковкий чугун получается в результате специальной обработки белого чугуна. В белом чугуне весь углерод находится в химически связанном состоянии с железом (Fe3C - цементит), что придает этому чугуну большую твердость и хрупкость и плохую обрабатываемость.

    Белый чугун

    В машиностроении белый чугун применяют для изготовления отливок, отжигаемых на так называемый ковкий чугун.

    При отжиге цементит разлагается па железо и свободный углерод, и отливки приобретают невысокую твердость и хорошую обрабатываемость.

    Серый чугун

    Наиболее широкое применение в технике имеет серый чугун, в котором большая часть углерода находится в свободном состоянии, в виде графита. Этому способствует высокое содержание кремния.

    Такой чугун обладает хорошими литейными качествами и применяется для производства чугунных отливок. Детали из этого чугуна получаются путем отливки в земляные или металлические формы (станины, шестерни, цилиндры, блоки и т.п.).

    Благодаря наличию свободного углерода (графита) серый чугун имеет небольшую твердость и хорошо обрабатывается резанием.

    www.conatem.ru

    2.2. Стали | Материаловед

    Для производства различных фасонных отливок в качестве конструкционного исходного материала, обладающего повышенными механическими свойствами, применяют стали конструкционные, инструментальные и с особыми физико–химическими свойствами (легированные).

    Отливки из углеродистых, конструкционных сталей, имеющие высокие прочностные свойства, преимущественно получают из следующих марок: сталь 15 Л; 20 Л; 30 Л; 40 Л; 50 Л; 55 Л.

    Конструкционные углеродистые стали

    Конструкционные углеродистые стали применяют в литейном производстве для изготовления литых деталей, несущих главным образом механические нагрузки (статические, динамические, вибрационные и др.).

    Широко применяемые в литейном производстве стали имеют следующий химический состав: 0,15-0,45% С, 0,5-1% Mn, 0,2-0,5% Si. Содержание серы и фосфора должно быть минимальным. Сталь по сравнению с чугуном обладает более высокими механическими свойствами и имеет большую величину усадки (около 2,5 %). Она имеет худшую жидкотекучесть и склонность к образованию внутренних напряжений и трещин. Большинство отливок из углеродистых сталей подвергают термической обработке, которую проводят для улучшения их микроструктуры, механических и эксплуатационных свойств.

    Конструкционные углеродистые стали разделяют на стали обыкновенного качества, стали качественные и стали высококачественные. Стали обыкновенного качества содержат повышенное количество серы (до 0,05-0,06 %) и фосфора (до 0,04-0,07 %). В качественных сталях максимальное содержание вредных примесей составляет не более 0,04 %. Кроме того, качественные стали имеют более узкие пределы содержания углерода (0,07-0,08%), в пределах одной марки. В сталях же обыкновенного качества он находится в пределах от 0,09 до 0,11 %. Качественная сталь менее загрязнена неметаллическими включениями и имеет меньшее содержание растворимых газов. Поэтому при примерно одинаковом содержании углерода качественные стали имеют более высокую пластичность и вязкость.

    По химическому составу стали подразделяют на углеродистые (низко- и среднеуглеродистые) и легированные, а по структуре - на феррито-перлитного и перлитного классов.

    Отливки из низкоуглеродистой стали марок сталь 15 Л…25 Л применяют в электромеханической и машиностроительной промышленности. Их подвергают цементации и закалке. Изготовление фасонных отливок из низкоуглеродистых сталей связано с рядом трудностей: высокой температурой их плавления, пониженной жидкотекучестью и образованием в отливке горячих трещин.

    Отливки из среднеуглеродистых сталей марок сталь 30 Л…45 Л применяют преимущественно в машиностроении при изготовлении фасонных деталей сложной формы. Такие отливки подвергают термической обработке, отжигу, нормализации и закалке с последующим отпуском. Среднеуглеродистые стали обладают хорошей жидкотекучестью, меньшей склонностью образования горячих трещин и имеют высокие механические свойства.

    Следует отметить, что в связи с высокой температурой плавления и температурой разливки, низкой жидкотекучестью и трудностью заливки форм, стали обыкновенного качества в качестве литейного сплава для изготовления фасонных отливок применяются чрезвычайно редко. Поэтому основным материалом при производстве фасонных стальных отливок являются низко- и среднеуглеродистые стали в зависимости от требуемых механических свойств литых деталей.

    Литейные марки качественных углеродистых сталей приведены в таблице 2.4.

    Таблица 2.4. Марки углеродистых качественных конструкционных сталей, применяемые для изготовления литых заготовок

    Марка стали Содержание основных элементов, %
    углерода марганца
    15 КП Л 0,12-0,19 0,25-0,50
    15 ПС Л 0,12-0,19 0,35-0,65
    20 КП Л 0,17-0,24 0,25-0,50
    20 ПС Л 0,17-0,24 0,35-0,65
    25 Л 0,22-0,30 0,50-0,80
    30 Л 0,27-0,35 0,50-0,80
    35 Л 0,32-0,40 0,50-0,80
    40 Л 0,37-0,45 0,50-0,80
    45 Л 0,42-0,50 0,50-0,80
    50 Л 0,52-0,60 0,50-0,80
    55 ПС Л 0,55-0,63 Не более 0,2
    60 Л 0,57-0,65 0,50-0,80

    Примечания:

  1. В указанных марках содержится не более кремния (Si) – 0,17-0,37%; хрома (Cr) – 0,25%; серы (S) и фосфора (Р) не более 0,04% (каждого).
  2. В обозначении марок углеродистых качественных сталей цифры показывают среднее содержание углерода в стали в сотых долях процента. Буква «Л» означает, что сталь литая, буквы «КП», «ПС» - степень раскисления стали; КП – кипящая; ПС – полуспокойная; маркировка без индекса - спокойная.

Среднеуглеродистые стали применяют в машиностроении предпочтительно для изготовления фасонных отливок сплошной формы. Отливки из сталей подвергают термической обработке: отжигу, нормализации и закалке с последующим отпуском.

Как правило, отливки, изготовленные из литейных сталей, обладают высоким временным сопротивлением (400-600 МПа), относительным удлинением (10-24%), ударной вязкостью и достаточной износостойкостью при ударных нагрузках. Основной элемент, определяющий механические свойства углеродистых литейных сталей – углерод.

Инструментальные углеродистые стали применяются для изготовления литого инструмента (режущий, мерительный, штамповочный и т.п.). Марки инструментальных углеродистых сталей приведены в таблице 2.5.

Таблица 2.5. Стали инструментальные углеродистые

В обозначениях марок углеродистых инструментальных сталей цифры показывают среднее процентное содержание углерода в десятых долях процента. Буквы, стоящие за цифрами, указывают: Г – на повышенное содержание марганца в стали; А – на принадлежность стали к группе высококачественных сталей, в которых содержится наименьшее количество вредных примесей (фосфора и серы соответственно не боле 0,018% и 0,025% каждого).

Легированные стали

Механические свойства легированных литейных сталей определяются количеством легирующих элементов. Легирование значительно повышает механические и эксплуатационные свойства (жаропрочность, коррозионную стойкость, износостойкость и т.д.). Например, марганец повышает износостойкость, хром – жаростойкость. Никель – коррозионную стойкость и т.д.

Легированные стали используют в энергомашиностроении, химической и нефтяной промышленности и металлургии и других областях. Из них изготовляют методом литья турбинные лопатки, клапаны гидропрессов, зубья ковшей экскаваторов и другие отливки.

Легирующие элементы обозначают русскими буквами:

Марки легированных сталей обозначают буквами и цифрами. Буквы обозначают присутствие в стали определенного легирующего элемента, цифры, стоящие за буквами, показывают содержание легирующих элементов в процентах. Если содержание элементов не превышает 1,5%, то цифра легирующего элемента не ставится. Содержание углерода в сталях указывается в начале марки легированной стали. Для конструкционных сталей первые цифры показывают среднее содержание углерода в сотых долях процента, для инструментальных (высокоуглеродистых) – в десятых долях процента. Буква «Л», стоящая в конце марки, указывает на то, что эта сталь литая. Пример записи и расшифровки одной из марок легированных жаропрочных сталей: 18Н12МЗТ Л, где Л – сталь литая, 0,18% углерода, 12% никеля, 3% молибдена, до 1,5% титана.

Наиболее высокими физико-механическим свойствами обладают отливки, изготовленные из высоколегированных сталей.

Стали высоколегированные со специальными свойствами подразделяются на следующие группы:

1) коррозионно-стойкие (нержавеющие), обладающие стойкостью против атмосферной коррозии: 25Х18 Л; 20Х13 Л; 10Х17 Н3С Л и др.;

2) кислотоупорные, обладающие сопротивляемостью агрессивным средам (кислотам): 15Х18 Н9Т Л; 5Х18Н11В Л и др.;

3) окалиностойкие (жаростойкие), обладающие стойкостью против окалинообразования (окисления при высоких температурах): 15Х9ЧС2 Л; 25Х23Н7С Л и др.;

4) жаропрочные, сохраняющие достаточно высокую прочность при высоких температурах: 15Х22 Н15 Л; 30×24Н12С Л; 15Х25Н19С2 Л и др.;

5) износостойкие с высокой сопротивляемостью износу при абразивном и ударном воздействиях в разных условиях: 110Г13Л; 15Х34 Л и др.

Легированные стали обладают плохими литейными свойствами и резко повышают себестоимость изготовления литой детали. Поэтому они рекомендуются к применению в исключительных случаях, когда невозможно применение конструкционных качественных углеродистых сталей.

xn--80aagiccszezsw.xn--p1ai

Максимальное содержание - углерод - Большая Энциклопедия Нефти и Газа, статья, страница 4

Максимальное содержание - углерод

Cтраница 4

Наименование марок легированных сталей состоит из обозначения элементов и следующих за ним цифр. Цифры, стоящие после букв, указывают среднее значение содержания легирующего элемента в процентах, кроме элементов, присутствующих в стали в малых количествах. Цифры перед первым буквенным обозначением указывают среднее или максимальное содержание углерода в стали в сотых долях процента.  

Одним из наиболее эффективных и широко применяемых методов защиты от МКК является легирование стали сильными карбидообразующими элементами, такими, как титан и ниобий. Эти элементы связывают углерод в прочные карбиды, тем самым предотвращая образование карбидов хрома и обеспечивая достаточную концентрацию хрома в твердом растворе. Содержание титана принимают равным Ti 5 (С-002) %, ниобия Nb10 (С-002) %, где 0 02 % - максимальное содержание углерода, при котором сохраняется стойкость стали против МКК. Преимуществом ниобия перед титаном является более высокая устойчивость его карбидов к растворению при повышении температуры закалки и к выгоранию при сварке, однако ниобий придает сталям склонность к горячим трещинам при сварке.  

В марках нержавеющих высоколегированных сталей по ГОСТ 5632 - 72 химические элементы обозначаются следующими буквами: А - азот, В - вольфрам, Д - медь, М - молибден, Р - бор, Т - титан, Ю - алюминий, X - хром, Б - ниобий, Г - - марганец, Е - селен, Н - никель, С - кремний, Ф - ванадий, К - кобальт, Ц - цирконий. Цифры, стоящие в наименовании марки после букв, указывают, так же как и в наименовании марок конструкционных сталей, процентное содержание легирующего элемента в целых единицах. Содержание элемента, присутствующего в стали в малых количествах, цифрами не обозначается. Цифра перед буквенным обозначением указывает на среднее или при отсутствии нижнего предела на максимальное содержание углерода в стали в сотых долях процента.  

После этого в поглотители Реберга вносят (подтоком очищенного кислорода) по 1 50мл 0 02 jV раствора Ва (ОН) 2 и пропускают воздух еще в течение 15 мин и под током воздуха оттитровывают раствор барита 0 01 N раствором соляной кислоты. Отсутствие разницы между расходом этой кислоты в данном титровании и отдельно установленным соотношением между баритом и соляной кислотой указывает на чистоту установки; в противном случае необходимо продолжать очистку прибора. После окончания такой очистки под током кислорода при скорости 5 мл / мин в сухие поглотители Реберга вносят по 2 00 - 2 50 мл 0 02 N. Оптимальный объем воды для анализа определяется содержанием в ней суммарного углерода: исходя из ниже приведенного соотношения между 1 мл 0 01 N раствора НС1 и углеродом, крайние пределы содержания суммарного углерода в пробе воды составляют от 10 до 200 мкг С. При правильном проведении анализа даже при максимальном содержании углерода титр барита в третьем поглотителе изменяется мало.  

С помощью рис. 25.6 посмотрим, что происходит при охлаждении расплавов различного состава ниже эвтектической температуры 1130 С. Сплав, состав которого определяется на диаграмме точкой 1, при охлаждении затвердевает в эвтектической точке Е, образуя смесь цементита Fe3C и аустенита; последний представляет собой твердый раствор углерода в железе. Описанная смесь называется ледебуритом. Расплав, состав которого отвечает точке 2, при отвердевании образует кристаллы аустенита, а остающийся расплав обогащается углеродом до тех пор, пока не будет достигнута эвтектическая точка. После этого получается твердая фаза, содержащая аустенит и ледебурит. Таким образом, расплавы состава 1 и 2 в итоге дают смеси одинаковых твердых веществ, аустенита и цементита, но в различных пропорциях. Эта величина характеризует максимальное содержание углерода в его твердом растворе с железом, а также определяет верхний предел содержания углерода в обычных углеродистых сплавах. При наличии большего количества углерода сплавы железа называются чугуном. При охлаждении расплава с составом 3 сначала образуются аустенитные кристаллы, более бедные углеродом, чем расплав; расплав же, наоборот, обогащается углеродом. При охлаждении до температуры, соответствующей точке на кривой солидуса, которая отвечает составу исходного расплава, он кристаллизуется с образованием аустенита.  

В течение последних лет было выполнено достаточное количество работ по изучению фазовых диаграмм и процессов испарения высокоогнеупорных псевдометаллических карбидов элементов IV и V групп, на основе которых можно представить общий характер поведения этих материалов. Эти соединения (а также аналогичные нитриды, тройные и четвертные карбидонитриды, окси-карбиды и оксикарбонитриды) имеют очень высокую энергию связи. На основании электропроводности и магнитных свойств этих соединений установлено, что связи в них имеют металлический характер во всей кристаллической решетке. Составы образующихся фаз не определяются валентностями, как это имеет место в случае ионных соединений переходных металлов или в случае соединений типа адамантина, в которых преобладают ст-связи. В карбидах при высоких температурах обычно присутствуют три нестехиометрические фазы. Металл (а-фаза) при высоких температурах присоединяет 5 - 10 ат. Следующая фаза имеет идеальную гексагональную решетку с химической формулой МаС, а отклонения от стехиометрического состава при температурах значительно ниже эвтектической, по-видимому, очень незначительны. При приближении к эвтектической температуре минимальная концентрация углерода в фазе М2С быстро уменьшается, а максимальная концентрация углерода увеличивается лишь незначительно. В любом случае при очень высокой температуре фаза М2С неустойчива и изменяется по перитектической реакции с образованием расплава и у-фазы типа NaCl с большими отклонениями от стехиометрического состава. Фаза имеет широкий диапазон составов. Однако представляется, что во всех изученных системах максимальное содержание углерода в карбиде, находящемся в равновесии с графитом, остается меньше стехиометрического. Результаты, полученные различными исследователями, иногда не согласуются, а интерпретация результатов затрудняется легкостью внедрения в эти фазы кислорода и азота, а также сложностью определения малых примесей.  

Страницы:      1    2    3    4

), а легированные - из железа, углерода и других легирующих добавок. Механические свойства сталей зависят от содержания углерода (рис.1). В практике чистое железо не используется, а применяются сплавы железа с углеродом: стали (углерода в сплаве содержится до 2 %) и чугуны (содержание углерода 2-6.%).

При малом содержании углерода (от 0,05 до 0,3 %) сталь хорошо прокатывается в листы, гнется, штампуется и вытягивается в холодном состоянии, легко обрабатывается резцом, хорошо сваривается и режется кислородом, но практически не закаливается, имеет относительно низкую твердость и износостойкость. Это строительные стали , из них прокаткой изготовляют трубы, листы, швеллеры, балки двутавровые, сталь угловую и другой сортовой прокат, используемый для изготовления строительных конструкций.

Небольшое количество углерода в стали (до 0,0001 %) может помещаться в свободных местах кристаллической решетки, большая же часть углерода находится в химически связанном с железом состоянии - в виде цементита Fe 3 C.

Углеродистая сталь представляет собой смесь зерен железа и карбидов железа. Первые называются в металловедении - ферритом, а вторые - цементитом.

Рис. 1. Влияние содержания углерода на механические характеристики сталей: твердость НВ, прочность , ударную вязкость , и относительное удлинение .

Стали, содержащие углерода 0,7-1,3 %, называют инструментальными , из них изготавливают режущий инструмент (сверла, метчики, плашки, резцы и др.). Стали с содержанием углерода 0,3-1,3 % хорошо закаливаются, становятся более твердыми и износостойкими. Чем больше в этих сталях углерода, тем они становятся тверже и прочнее, менее вязкими и пластичными, хуже обрабатываются и свариваются.

Сталь называется углеродистой (нелегированной) если в ней кроме углерода нет других легирующих элементов. Естественно, в ней есть примеси других элементов (сера, фосфор, марганец, кремний и т.д.), которые попали в нее из исходных веществ при производстве стали, т.е. из железной руды, лома, чугуна.

Высокоуглеродистые стали по сравнению с низкоуглеродистыми более прочные и твердые, но менее пластичны и более хрупки. Поэтому содержание углерода, определяя свойства сталей, делит их на группы назначения: СТРОИТЕЛЬНЫЕ - не высокая пластичность и ударная вязкость; ИНСТУМЕНТАЛЬНЫЕ - более высокая твердость; МАШИНОСТРОИТЕЛЬНЫЕ по сравнению со строительными сталями имеют более низкие значения ударной вязкости и пластичности, но повышенные прочности и твердости.


Рис.2. Классификация углеродистых сталей по качеству.

Стали классифицируются по следующим признакам: по химическому составу (углеродистые и легированные); по назначению (строительные, инструментальные); по способу производства (мартеновские, бессемеровские); по качеству (обыкновенные, качественные, высококачественные).

Стали обыкновенного качества (рис.2) делятся на три группы: А, Б и В. Группа А это стали Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст6 (приложение 1). У этих сталей нормируются механические свойства (s в, s т, d). Цифра в марке стали означает ее условный номер и изменяется от 0 до 6, чем больше эта цифра, тем больше значение s в и s т. Индексы Б и В указываются в марках сталей группы Б и В, а индекс А у сталей группы А не указывается.

Имеются разновидности сталей группы А по раскислению (кп, сп, пс) и по содержанию марганца (Г) : Ст0, Ст1кп, Ст1пс, Ст1сп, Ст2пс, Ст2сп, Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп,

У сталей группы Б нормируется химический состав по углероду (от 0,23 до 0,49%), кремнию (0,05-0,35 %) и марганцу (0,25 1,2 %): БСт0, БСт1, БСт6 (приложение 2).

Повторяются те же разновидности сталей как и у группы А по раскислению и по содержанию марганца: БСт0, БСт1кп, БСт1пс, БСт6.

Группа В - нормируется химический состав и механические свойства: ВСт1, ВСт2, ВСт3, ВСт4, ВСт5 (индекс В - группа стали В; в отличии от сталей групп А и Б в группе В нет сталей Ст0, Ст6).

По степени раскисления стали делятся на:

Кипящие стали (большое содержание кислорода в окислах железа и менее 0,005 % Si) имеющие более низкий порог хладноломкости, поэтому эти стали (Ст1кп, Ст2кп, Ст3кп, Ст4кп) нельзя применять для строительных конструкций, работающих при низкой температуре;

Спокойные стали (Ст1сп, Ст2сп,), которые более надежны при низких температурах;

Полуспокойные стали (Ст1пс, Ст2пс,).

Примеры расшифровки обозначений сталей: сталь Ст2кп3 - сталь обыкновенного качества группы А, марки Ст2, кипящая, 3-ей категории; сталь ВСт4кп4 - сталь обыкновенного качества, группы В, марки Ст 4, кипящая, 4-ой категории.

Качественные углеродистые стали могут быть с обычным содержанием марганца (05кп, 08кп, 25, 85) и с повышенным (15Г, 20Г, 85Г).

Цифра в марке означает содержание углерода в сотых долях %, а индекс Г указывает на наличие марганца (1%). Высококачественные стали содержат меньшее количество вредных примесей (S < 0,02 %, Р < 0,03 %) и обозначаются индексом А в конце марки стали. Например: У8А - высококачественная высокоуглеродистая, инструментальная, сталь, содержащая 0,8 % углерода.

Применение углеродистых сталей в строительстве и машиностроении:

1. Стали обыкновенного качества используют в конструкциях, не подвергающих динамическим нагрузкам и влиянию низких температур.

2. Стали 08кп, 05кп - для листовой штамповки в автомобилестроении и других отраслях.

3. Стали Ст0, Ст1, Ст2, Ст08, Ст25 - для изготовления проката листа, швеллера и т.д.

4. Стали 10, 15, 25 - для сварных и клепанных конструкций (без последующей термообработки).

5. Стали Ст3кп, Ст5, МСт3кп, и др. для изготовления ЖБИ (приложение 3).

6. Листовые конструкции, резервуары, трубопроводы изготовляют из сталей МСт1кп, МСт2кп, МСт3пс.

7. Стали 30, 35, 40 - для деталей (валы, оси, шестерни), работающих при больших нагрузках (подвергаются нормализации и закалке).

8. Стали 45, 50 - для коленчатых валов.

9. Стали 55, 60, 65 и 70 - пружины, рессоры, шестерни (закалка и отпуск).

По химическому составу различают углеродистые и легированные стали

Углеродистые стали - это сплавы железа с углеродом, содержащие до 2,14 % углерода (С) при малом содержании других элементов. Они обладают высокой пластичностью и хорошо деформируются. Углерод сильно влияет на свойства стали даже при незначительном изменении его содержания. Углеродистые стали можно классифицировать по нескольким параметрам:

  • По качеству
  • По способу раскисления

По качеству

Стали обыкновенного качества

Изготавливаются по ГОСТ 380-71. Обозначают буквами Ст и условными номерами от 0 до 6, например: Ст 0, Ст 1, ..., Ст 6. Степень раскисления обозначают буквами сп (спокойная сталь), пс (полу-спокойная), кп (кипящая), которые ставят в конце обозначения марки стали.

В зависимости от назначения различают три группы сталей обыкновенного качества: А, Б и В. В марках указывают только группы Б и В, группу А не указывают.

  • Группа А поставляются только по механическим свой-ствам, химический состав сталей этой группы не регламентируется, он только указывается в сертификатах завода-изготовителя. Стали этой группы обычно используются в изделиях в состоянии поставки без обработки давлением и сварки. Чем больше цифра условного номера стали, тем выше ее прочность и меньше пла-стичность.
  • Группа Б поставляется только с гарантируемым химическим составом. Чем больше цифра условного номера стали, тем выше содержание углерода. Эти стали в дальнейшем могут подвергаться деформации (ковке, штамповке и др.), а в отдельных случаях и термической обработке. При этом их первоначальная структура и механические свойства не сохраняются. Знание химического состава стали позволяет определить температурный режим горячей обработки давлением и термообработки.
  • Группа В могут подвергаться сварке. Их поставляют с гарантированным химическим составом и гарантированными свойствами. Стали этой группы маркируются буквой В и цифрой, например - В СтЗпс. Эта сталь имеет механические свойства, соответствующие ее номеру по группе А, а химический состав - номеру по группе Б с коррекцией по способу раскисления.

Качественные углеродистые стали

Этот класс углеродистых сталей изготавливается по ГОСТ 1050-74. Качественные стали поставляют и по химическому составу, и по механическим свойствам.. К ним предъявляются более жесткие требования по содержанию вредных примесей (серы не более 0,04 %, фосфора не более 0,035 %), неметаллических вклю-чений и газов, макро- и микроструктуры.

Качественные углеро-дистые стали маркируют двузначными цифрами 08, 10, 15, ..., 85, указывающими среднее содержание углерода в сотых долях про-цента с указанием степени раскисленности (кп, пс).

Качественные стали делят на две группы: с обычным содержанием марганца (до 0,8 %) и с повышенным содержанием (до 1,2 %). При обозна-чении последних в конце марки ставится буква Г, например 60 Г. Марганец повышает прокаливаемость и прочностные свойства, но несколько снижает пластичность и вязкость стали.

При обозначении кипящей или полуспокойной стали в конце марки указывается степень раскисленности: кп, пс. В случае спокойной стали степень раскисленности не указывается.

По содержанию углерода качественные углеродистые стали подразделяются:

  • низкоуглеродистые (до 0,25 % С),
  • среднеуглеродистые (0,3-0,55 % С)
  • высокоуглеродистые (0,6-0,85 % С).

Для изделий ответственного назначения применяют высоко-качественные стали с еще более низким содержанием серы и фос-фора. Низкое содержание вредных примесей в высококачествен-ных сталях дополнительно удорожает и усложняет их производ-ство. Поэтому обычно высококачественными сталями бывают не углеродистые, а легированные стали. При обозначении высоко-качественных сталей в конце марки добавляется буква А, напри-мер сталь У10А.

Углеродистые стали, содержащие 0,7-1,3 % С, используют для изготовления ударного и режущего инструмента. Их марки-руют У7, У13, где У означает углеродистую сталь, а цифра - содержание углерода в десятых долях процента.

По способу раскисления

Кипящие
Содержат до 0,05% кремния, раскисляются марганцем. Имеют резко выраженную химическую неоднородность в слитке. Их преимущества - высокий выход годного продукта (более 95%), хорошая способность к штамповке в холодном состоянии. Недостатки -повышенный порог хладноломкости и невозможность широкого использования для территорий с холодным климатом.

Полуспокойные
Содержат 0,05- 0,15% кремния, раскисляются марганцем и алюминием, выход годного продукта -90-95%.

Спокойные
Содержит 0,15-0,35% кремния, раскисляется кремнием, марганцем и алюминием. Выход годного - около 85%, однако, металл имеет более плотную структуры и однородный химический состав.

Для дальнейшего рассмотрения структурных превращений при медленном охлаждении необходимо все стали разделить на две группы:

Стали первой группы применяются в основном как стали конструкционные, а стали второй группы - как стали инструментальные.

В сталях с содержанием углерода менее 0,8% линии GS и PSK определяют температуры начала и конца перекристаллизации (вторичная кристаллизация) аустенита в феррит.

Перекристаллизация

Перекристаллизация вызывается аллотропическим превращением Fe γ → Fe α .

В чистом железе это превращение проходит при постоянной температуре (910°), в то время как в сталях оно проходит в интервале температур, так как для стали с содержанием С = 0,2% процесс перекристаллизации начнется при температуре 850° и закончится при температуре 723°.

Структурные превращения при охлаждении стали

Однако при охлаждении стали в интервале температур 850-723° не весь аустенит превратится в феррит. Часть аустенита останется. Этот аустенит при температуре 723° превратится в перлит.

В результате этих двух превращений в интервале температур, определяемых линиями GS и PSK, структура сталей с содержанием С < 0,8% при комнатной температуре будет состоять из феррита + перлита.

Количественное соотношение между ферритом и перлитом определится процентом углерода в стали. Чем больше углерода б стали, тем больше в ней перлита, и сталь будет более твердая, прочная, но менее пластичная.

В сталях с содержанием С>0,8% линии SE и PSK определяют температуры начала и конца кристаллизации цементита из аустенита (вторичная кристаллизация).

Это превращение вызывается уменьшением растворимости углерода в аустените при охлаждении.

При температуре 1130° в аустените может раствориться 2% углерода, а при 723° только 0,8%. Поэтому если в стали углерода 1%, то при охлаждении начиная с температуры 820° из аустенита будет выделяться избыток углерода в форме цементита до тех пор, пока в аустените не останется 0,8% углерода.

При температуре 723° этот аустенит превратится в перлит.

В результате этих двух превращений в интервале температур, определяемых линиями ES и PSK и при температуре 723°, структура сталей с содержанием С>0,8% при комнатной температуре будет состоять из цементита + перлита.

Количественное соотношение между цементитом и перлитом также будет определяться количеством углерода в стали. Чем больше в стали углерода, тем больше в ней цементита и сталь будет более твердая, но и более хрупкая.

В сталях с содержанием С=0,8% превращение аустенита при медленном охлаждении начнется и закончится при температуре 723°. Структура этой стали при комнатной температуре будет перлит .

Температуры линииPSK, если речь идет о нагреве, обозначаютA C1 .

Температуры линийGS иSE обозначают соответственно А Сз или А Ст.



Что еще почитать