Пример расчета катапульты для воздушного старта ракеты космического назначения. Аэродинамический нагрев конструкции ракеты Коэффициент лобового сопротивления при

Рассматривается воздушный старт (старт с самолета) РКН массой 103 т. Катапульта должна разогнать ее до скорости, обеспечивающей безударный выход ракеты из самолета. Ракета движется на бугелях по направляющим, и после того как на направляющих останется одна пара бугелей, под действием силы тяжести начинает приобретать угловую скорость, в результате чего может произойти соударение с аппарелью самолета.

Этим определяется ограничение снизу на скорость катапультирования: иобк > 12,5 м/с.

По сравнению с минометным стартом выведение РКН из самолета при помощи катапульты имеет ряд преимуществ: отсутствует силовое (волновое) и тепловое воздействие горячих газов на самолет, ракета может иметь аэродинамические поверхности, уменьшаются габариты стартовой системы, что упрощает ее компоновку в грузовом отсеке, можно выводить ракету в правильной ориентации (головной частью навстречу потоку). Последние преимущества позволяют использовать скорость самолета для сообщения ракете начальной скорости.

Используется схема катапульты с двумя тянущими цилиндрами. Суммарная масса подвижных частей катапульты на основании предварительных расчетов принималась равной 410 кг. Так как время работы данной катапульты значительно больше, чем рассмотренной выше, рассматривается схема с двумя ГГ, работающими последовательно, что позволяет изменять газоприход в большем диапазоне, чем в схеме с одним ГГ. Учитывая большое расстояние между силовыми цилиндрами (2,5 м) и, следовательно, большую длину соединительных трубопроводов, рассматриваются схемы с двумя ГГ, питающими последовательно оба силовых цилиндра, и с двумя парами ГГ, причем каждая пара питает свой цилиндр. Для выравнивания давлений между цилиндрами в этом случае используется соединительная труба диаметром 50 мм. Исходя из прочности ракеты и опорных узлов (элементов, в которые упирается траверса катапульты) расчеты проводились для значений суммарной силы, создаваемых катапультой: Лкат = 140 т и Лкат = 160 т. Отметим, что суммарное усилие, действующее на самолет при старте, меньше этих величин на величину силы трения в бугелях РКН. В данной схеме используется пневматическое тормозное устройство. При проведении расчетов учитывалось, что в момент срабатывания катапульты самолет совершает маневр «горка». При этом угол тангажа составляет 24°, что дополнительно способствует разгону РКН за счет проекции силы тяжести, а кажущееся поперечное ускорение свободного падения в грузовом отсеке 3 м/с2. Используется низкотемпературное баллиститное топливо с температурой горения при постоянном давлении 2200 К. Максимальное давление в ГГ не должно превышать 200-105 Па.

В варианте 1 с максимальной силой 140 т (схема с двумя парами ГГ) после серии предварительных расчетов время работы первой камеры было выбрано равным 0,45 с, а диаметр соплового отверстия 27 мм. Диаметр каналов в шашках 4 мм, начальная площадь поверхности горения первой камеры 0,096 м2, масса заряда 1,37 кг (на каждый ГГ). Диаметр соплового отверстия второй камеры 53 мм, диаметр каналов в шашках 7,7 мм, начальная площадь поверхности горения 0,365 м2, масса заряда 4,95 кг. Диаметр рабочей камеры силового цилиндра 225 мм, диаметр штока 50 мм, путь поршня до начала торможения 5,0 м.

Максимальное ускорение РКН составило 16,6 м/с2, скорость ракеты в момент отделения от траверсы 12,7 м/с (так как длина направляющих при использовании катапульты, как правило, больше, чем ход катапульты, то скорость ракеты при сходе с направляющих отличается от скорости, которую сообщает ракете катапульта). Максимальная температура внутренней стенки силового цилиндра 837 К, штока 558 К.

В приложении 3 приводятся графики, соответствующие этому варианту. Время включения второго ГГ подобрано таким образом, чтобы давление в силовом цилиндре оставалось неизменным. С учетом разброса времени воспламенения второй ГГ в реальных условиях запускается несколько позже расчетного времени, поэтому кривая давления в силовых цилиндрах может иметь небольшой провал. Если второй ГГ запустить раньше, то на кривой появится нежелательный всплеск давления. На рис. П3.1 показаны зависимости давлений в ГГ, рабочих цилиндрах и в камере торможения от перемещения подвижных частей катапульты. Представление давления в виде функции пути позволяет более наглядно оценить эффективность рабочего цикла катапульты, так как работа, совершаемая ею, пропорциональна интегралу от силы (давления) по пути. Как видно из кривых, площадь подынтегральной функции близка к максимально возможной (с учетом ограничения по максимальной силе). Использование двухступенчатого ГГ позволяет получить большую скорость.

Для варианта 2 (катапульты, развивающей усилие 160 т) диаметр силового цилиндра увеличен до 240 мм, диаметр штока до 55 мм. После серии предварительных расчетов время работы первой камеры было выбрано равным 0,45 с, а диаметр соплового отверстия 28 мм. Диаметр каналов в шашках 4 мм, начальная площадь поверхности горения 0,112 м2, масса заряда 1,43 кг (на каждый ГГ). Диаметр соплового отверстия второй камеры 60 мм, диаметр каналов в шашках 7,4 мм, начальная площадь поверхности горения 0,43 м2, масса заряда 5,8 кг. При этом достигнуто максимальное ускорение РКН 18,5 м/с2, скорость ракеты в момент отделения от траверсы 13,4 м/с. Максимальные температуры внутренней стенки силового цилиндра (850 К), штока (572 К) практически не изменились.

Далее рассмотрим схему, в которой оба силовых цилиндра работают от одних и тех же двух последовательно срабатывающих ГГ. Для этого приходится использовать достаточно большой коллектор (трубопровод), соединяющий ГГ с газовыми цилиндрами. В этом и последующем вариантах считаем, что трубопровод выполнен из стали с повышенной теплостойкостью 12МХ, пределом текучести 280 МПа при температуре 293 К и 170 МПа при температуре 873 К, обладающей высоким коэффициентом теплопроводности.

Для варианта 3 с усилием 140 т диаметр соединительного трубопровода примем равным 110 мм при толщине стенки 13 мм. Диаметр силового цилиндра, как и в варианте 1, 220 мм, диаметр штока 50 мм. После серии предварительных расчетов время работы первой камеры было выбрано равным 0,46 с, а диаметр соплового отверстия 40 мм. Диаметр каналов в шашках 16 мм, начальная площадь поверхности горения 0,43 м2, масса заряда 4,01 кг. Диаметр соплового отверстия второй камеры 84 мм, диаметр каналов в шашках 8,0 мм, начальная площадь поверхности горения 0,82 м2, масса заряда 11,0 кг.

Максимальное ускорение РКН составило 16,5 м/с2, скорость ракеты в момент отделения от траверсы 12,65 м/с (на 0,05 м/с меньше, чем в варианте 1). Максимальная температура внутренней стенки силового цилиндра 755 К, штока 518 К (уменьшились на 40-80 К из-за теплопотерь в трубопроводе). Максимальная температура внутренней стенки трубопровода 966 К. Это достаточно высокая, но вполне допустимая температура, учитывая, что толщина зоны, в которой из-за нагрева заметно уменьшается предел прочности материала, составляет всего 3 мм.

Для варианта катапульты, развивающей усилие 160 т (вариант 4), диаметр силового цилиндра принят равным 240 мм, диаметр штока 55 мм, диаметр трубопровода 120 мм. После проведения серии предварительных расчетов время работы первой камеры было выбрано равным 0,46 с, а диаметр соплового отверстия 43 мм. Диаметр каналов в шашках 16 мм, начальная площадь поверхности горения 0,515 м2, масса заряда 4,12 кг. Диаметр соплового отверстия второй камеры 90 мм, диаметр каналов в шашках 7,8 мм, начальная площадь поверхности горения 0,95 м2, масса заряда 12,8 кг. При этом максимальное ускорение РКН 18,4 м/с2, скорость ракеты в момент отделения от траверсы 13,39 м/с. Максимальные температуры внутренней стенки силового цилиндра 767 К, штока 530 К. Максимальная температура внутренней стенки трубопровода 965 К. Уменьшение диаметра трубопровода до 95 мм приводит к росту температуры его стенок до 1075 К, что еще допустимо.

В заключение рассмотрим влияние числа ГГ на надежность катапульты. Один одноступенчатый ГГ обеспечит максимальную надежность при минимальной скорости выброса ракеты. В случае незапуска ГГ аварии не происходит. Повысить скорость выброса можно увеличив скорость горения топлива, показатель в законе горения, давление в конце работы ГГ до 60-80 МПа (давление в силовых цилиндрах и трубопроводе остается неизменным), диаметр трубопровода (начального объема).

Общий двухступенчатый ГГ имеет меньшую надежность, но обеспечивает повышение скорости выброса ракеты. В случае незапуска ГГ второй ступени происходит один из следующих вариантов: выброс ракеты с малой скоростью, исключающий ее дальнейшее использование, задевание ракетой самолета с незначительными последствиями (невозможность полного закрытия аппарели,

невозможность последующего наддува грузового отсека), перекос или удар ракеты по самолету, приводящий к поломкам или пожару и, в конечном случае, к гибели самолета. Повысить надежность для этого случая могут следующие меры, предотвращающие худшее развитие событий дублирование систем запуска ГГ второй ступени, увеличение времени работы ГГ первой ступени (за счет чего скорость выхода ракеты при работе только ГГ первой ступени повысится настолько, что последствия незапуска будут не столь опасными), изменение конструкции самолета, исключающее его аварию при выходе ракеты с меньшей скоростью. Следует отметить, что в рассматриваемых вариантах при срабатывании только первого ГГ скорость выхода ракеты уменьшится на 3-4 м/с.

АЭРОДИНАМИЧЕСКИЙ НАГРЕВ - нагрев тел, движущихся с большой скоростью в воздухе или др.газе. А. н. неразрывно связан с аэродинамическим сопротивлением , к-рое испытывают тела при полёте в атмосфере. Энергия, затрачиваемая на преодоление сопротивления, частично передаётся телу в виде А. н. Рассмотрение физ. процессов, обусловливающих А. н., удобно провести с точки зрения наблюдателя, находящегося на движущемся теле. В этом случае можно заметить, что набегающий на тело газ тормозится вблизи поверхности тела. Сначала торможение происходит в ударной волне , образующейся перед телом, если полёт происходит со сверхзвуковой скоростью. Дальнейшее торможение газа происходит, как и при дозвуковых скоростях полёта, непосредственно у самой поверхности тела, где оно вызывается силами вязкости, заставляющими молекулы "прилипать" к поверхности с образованием пограничного слоя .

При торможении потока газа его кинетич. энергия уменьшается, что в соответствии с законом сохранения энергии приводит к увеличению внутр. энергии газа и его темп-ры. Макс. теплосодержание (энтальпия )газа при его торможении у поверхности тела близко к энтальпии торможения: , где - энтальпия набегающего потока, а - скорость полёта. Если скорость полёта не слишком высока (1000 м/с), то уд. теплоёмкость при пост. давлении с р может считаться постоянной и соответствующая темп-pa торможения газа может быть определена из выражения


где Т е - равновесная темп-pa (предельная темп-ра, до к-рой могла бы нагреться поверхность тела, если бы не было отвода энергии), - коэф. конвективного теплообмена, индексом отмечаются параметры на поверхности. T е близка к темп-ре торможения и может быть определена из выражения

где r -коэфф. восстановления темп-ры (для ламинарного , для турбулентного- ), T 1 и М 1 - темп-pa и Маха число на внеш. границе пограничного слоя, -отношение уд. теплоёмкостей газа при пост. давлении и объёме, Pr - число Прандтля.

Величина зависит от скорости и высоты полёта, формы и размеров тела, а также от нек-рых др. факторов. Подобия теория позволяет представить законы теплообмена в виде соотношений между основными безразмерными критериями - Нуссельта числом , Рейнольдса числом , Прандтля числом и температурным фактором , учитывающим переменность теплофиз. свойств газа поперек пограничного слоя. Здесь и - и скорость газа, и - коэфф. вязкости и теплопроводности, L - характерный размер тела. Наиб. влияние на конвективный А. н. оказывает число Рейнольдса. В простейшем случае продольного обтекания плоской пластины закон конвективного теплообмена для ламинарного пограничного слоя имеет вид

где и вычисляются при темп-ре а для турбулентного пограничного слоя

На носовой части тела с затуплением сферич. формы ламинарный теплообмен описывается соотношением:

где r e и m е вычисляются при темп-ре T е . Эти ф-лы могут быть обобщены и на случай расчёта теплообмена при безотрывном обтекании тел более сложной формы с произвольным распределением давления. При турбулентном течении в пограничном слое происходит интенсификация конвективного А. н., связанная с тем, что, помимо молекулярной теплопроводности, существ. роль в переносе энергии нагретого газа к поверхности тела начинают играть турбулентные пульсации.

При теоретич. расчёте А. н. аппарата, летящего в плотных слоях атмосферы, течение около тела можно разбить на две области - невязкую и вязкую (пограничный слой). Из расчёта течения невязкого газа во внеш. области определяется распределение давления по поверхности тела. Течение в вязкой области при известном распределении давления вдоль тела может быть найдено путём численного интегрирования ур-ний пограничного слоя или для расчёта А. н. могут быть использованы разл. приближённые методы.

А. н. играет существ. роль и при сверхзвуковом течении газа в каналах, в первую очередь в соплах ракетных двигателей. В пограничном слое на стенках сопла темп-pa газа может быть близкой к темп-ре в камере сгорания ракетного двигателя (до 4000 К). При этом действуют те же механизмы переноса энергии к стенке, что и в пограничном слое на летящем теле, в результате чего и возникает А. н. стенок сопла ракетных двигателей.

Для получения данных по А. н., особенно для тел сложной формы, в т. ч. тел, обтекаемых с образованием отрывных областей, проводят эксперим. исследования на маломасштабных, геометрически подобных моделях в аэродинамических трубах с воспроизведением определяющих безразмерных параметров (чисел M, Re и температурного фактора).

С повышением скорости полёта темп-pa газа за ударной волной и в пограничном слое возрастает, в результате чего происходит диссоциация и молекул набегающего газа. Образующиеся при этом атомы, ионы и электроны диффундируют в более холодную область - к поверхности тела. Там происходит обратная хим. реакция - рекомбинация, идущая с выделением тепла. Это даёт дополнит. вклад в конвективный А. н. В случае диссоциации и ионизации удобно перейти от темп-р к энтальпиям:


где -равновесная энтальпия, и - энтальпия и скорость газа на внеш. границе пограничного слоя, а - энтальпия набегающего газа при темп-ре поверхности. В этом случае для определения могут быть использованы те же критич. соотношения, что и при относительно невысоких скоростях полёта.

При полёте на больших высотах на конвективный нагрев может оказать влияние неравновесность физико-хим. превращений. Это явление становится существенным, когда характерные времена диссоциации, ионизации и др. хим. реакций становятся равными (по порядку величины) времени пребывания частиц газа в области с повышенной темп-рой вблизи тела. Влияние физико-хим. неравновесности на А. н. проявляется в том, что продукты диссоциации и ионизации, образовавшиеся за ударной волной и в высокотемпературной части пограничного слоя, не успевают рекомбинировать в пристеночной, относительно холодной части пограничного слоя, теплота реакции рекомбинации не выделяется и А. н. уменьшается. В этом случае важную роль приобретают каталитич. свойства материала поверхности тела. Применяя материалы или покрытия с низкой каталитич. активностью по отношению к реакциям рекомбинации (напр., двуокись кремния), можно заметно снизить величину конвективного А. н.

Если через проницаемую поверхность тела происходит подача ("вдув") газообразного охладителя внутрь пограничного слоя, то интенсивность конвективного А. н. снижается. Это происходит гл. обр. в результате дополнит. затрат тепла на нагрев вдуваемых в пограничный слой газов. Эффект снижения конвективного теплового потока при вдуве инородных газов тем сильнее, чем меньше их молекулярный вес, поскольку при этом возрастает уд. теплоёмкость вдуваемого газа. При ламинарном режиме течения в пограничном слое эффект вдува проявляется сильнее, чем при турбулентном. При умеренных уд. расходах вдуваемого газа снижение конвективного теплового потока можно определить по формуле

где - конвективный тепловой поток к эквивалентной непроницаемой поверхности, G - уд. массовый расход вдуваемого газа через поверхность, а - коэф. вдува, зависящий от режима течения в пограничном слое, а также свойств набегающего и вдуваемого газов. Радиационный нагрев происходит вследствие переноса лучистой энергии из областей с повышенной темп-рой к поверхности тела. При этом наибольшую роль играет в УФ- и видимой областях спектра. Для теоретич. расчёта радиац. нагрева необходимо решать систему интегродифференциальных ур-ний радиац. газовой , учитывающих собств. излучение газа, поглощение излучения средой и перенос лучистой энергии по всем направлениям в окружающей тело высокотемпературной области течения. Интегральный по спектру радиац. поток q Р0 к поверхности тела может быть рассчитан с помощью Стефана-Болъцмана закона излучения:

где T 2 - темп-pa газа между ударной волной и телом, = 5,67*10 -8 Вт/(м 2 *К 4) - постоянная Стефана, - эфф. степень черноты излучающего объёма газа, к-рый в первом приближении может рассматриваться как плоский изотермич. слой. Величина е определяется совокупностью элементарных процессов, вызывающих излучение газов при высоких темп-pax. Она зависит от скорости и высоты полёта, а также от расстояния между ударной волной и телом.

Если относит. величина радиац. А. н. велика, то существ. роль начинает играть радиац. охлаждение газа за ударной волной, связанное с выносом энергии из излучающего объёма в окружающую среду и понижением его темп-ры. В этом случае при расчёте радиац. А. н. должна быть введена поправка, величина к-рой определяется параметром высвечивания:


где - скорость полёта, - плотность атмосферы. При полёте в атмосфере Земли со скоростями ниже первой космической радиац. А. н. мал по сравнению с конвективным. При второй космич. скорости они сравниваются по порядку величины, а при скоростях полёта 13-15 км/с, соответствующих возвращению на Землю после полёта к др. планетам, осн. вклад даёт радиационный А. н.

Частный случай А. н.- нагрев тел, движущихся в верх. слоях атмосферы, где режим обтекания является свободномолекулярным, т. е. молекул газа соизмерима или даже превышает размеры тела. В этом случае образования ударной волны не происходит и при больших скоростях полёта (порядка первой космической) для расчёта А. н. может быть использована простая ф-ла

где - угол между нормалью к поверхности тела и вектором скорости набегающего потока, а - коэф. аккомодации, к-рый зависит от свойств набегающего газа и материала поверхности и, как правило, близок к единице.

С А. н. связана проблема "теплового барьера", возникающая при создании сверхзвуковых самолётов и ракет-носителей. Важную роль А. н. играет при возвращении космич. аппаратов в атмосферу Земли, а также при входе в атмосферу планет со скоростями порядка второй космической и выше. Для борьбы с А. н. применяются спец. системы теплозащиты .

Лит.: Радиационные свойства газов при высоких температурах, M., 1971; Основы теории полета космических аппаратов, M., 1972; Основы теплопередачи в авиационной и ракетно-космической технике, M., 1975. И. А. Анфимов .

В полете на АУТ конструкция корпуса ракеты испытывает аэродинамический нагрев. Оболочки топливных отсеков дополнительно нагреваются при газогенераторном наддуве температура нагрева может достигать 250-300 оС. При вычислении запасов прочности и устойчивости механические характеристики материала (предел прочности и модуль упругости) принимаются с учетом нагрева конструкции.

На рисунке 1.3 представлена принципиальная схема нагружения топливного отсека. К опорным обечайкам (переходникам) приложены осевые силы; поперечные силы и изгибающие моменты; на днища и цилиндрические оболочки баков воздействуют внутреннее избыточное давление наддува pн и гидростатическое давление, определяемое высотой столба жидкости Н и величиной осевой перегрузки nx1. На рисунке 1.3 также изображена эпюра осевых усилий, возникающих в поперечных сечениях топливного отсека. Здесь воздействие момента изгибающего приведено к дополнительной осевой силе сжатия Δ N, которая подсчитывается по максимальной величине нормальных напряжений в сжатой панели:

Здесь W=pR2h - момент сопротивления поперечного сечения цилиндрической оболочки топливного бака. При Fсеч=pDh эквивалентная осевая сила DN=4M/D.

Сила осевого распора от действия давления наддува дает свою составляющую продольной силы. При этом в верхнем баке результирующая сила NS имеет положительную величину (рисунок 1.3), т.е. цилиндрическая оболочка этого бака будет испытывать растяжение в осевом (меридиональном) направлении (от давления наддува). Эту оболочку нужно проверять только на прочность.

Рисунок 1.3 - Принципиальная схема нагружения топливного отсека.

У нижнего бака цилиндрическая оболочка работает на продольное сжатие, поэтому, помимо проверки прочности, ее нужно проверять на устойчивость. Несущая способность этой оболочки будет определяться суммой критической нагрузки и силы осевого распора

, (1.4)

а с учётом составляющей от изгиба

(1.5)

Определение входящей в это выражение величины критического напряжения является наиболее ответственной задачей при проверке устойчивости продольно-сжатой тонкостенной цилиндрической оболочки топливного бака

Теоретической основой для разработки методов оценки несущей способности тонкостенных конструкций корпусов жидкостных ракет является теория устойчивости упругих оболочек.

Первые решения данной задачи относятся к началу века. В 1908-1914 гг. независимо друг от друга Р. Лоренц и С.П. Тимошенко получили фундаментальную формулу для определения критических напряжений продольно-сжатой упругой цилиндрической оболочки:

(1.6)

Эта формула определяет верхнюю границу критических напряжений гладких (изотропных), идеальных по форме цилиндрических оболочек. Если коэффициент Пуассона принята m=0,З, то формула (1.6) получит вид:

(1.7)

Приведенные формулы получены при жестких допущениях идеальности формы и безмоментности докритического состояния упругой цилиндрической оболочки, характерных для классической постановки задач устойчивости. Они позволяют оценить верхнюю границу несущей способности продольно-сжатых тонкостенных цилиндрических оболочек средней длины. Поскольку вышеуказанные допущения в практике не реализуются, то действительные критические напряжения, наблюдаемые при испытаниях цилиндрических оболочек на осевое сжатие, значительно ниже (в 2 раза и более) верхних значений. Попытки разрешить это противоречие привели к созданию нелинейной теории устойчивости оболочек (теории больших прогибов).

Первые решения рассматриваемой задачи в нелинейной постановке дали обнадеживающие результаты. Были получены формулы, определяющие так называемую нижнюю границу устойчивости. Одна из таких формул:

(1.8)

длительное время использовалась для практических расчетов.

В настоящее время преобладает мнение, что при оценке устойчивости реальных конструкций следует ориентироваться на критическую нагрузку, определенную с учетом влияния начальных неправильностей формы с помощью нелинейной теории. Однако и в данном случае можно получить только ориентировочные значения критических нагрузок, поскольку влияния неучтенных факторов (неравномерность нагружения, разброс механических характеристик материалов и др.), случайных по своей природе, для тонкостенных конструкций вносит заметную погрешность. В этих условиях при оценке несущей способности разрабатываемых ракетных конструкций в проектных организациях предпочитают ориентироваться на результаты экспериментальных исследований.

Первые массовые эксперименты по изучению устойчивости продольно-сжатых тонкостенных цилиндрических оболочек относятся к 1928-1934 гг. С тех пор был накоплен значительный материал, неоднократно обсуждавшийся с целью получения рекомендаций для нормирования параметра критической нагрузки, обсуждаются эмпирические зависимости, предложенные различными авторами для назначения параметра . В частности, для тщательно изготовленных оболочек рекомендуется формула, полученная американскими учеными (Вайнгартен, Морган, Сейд) на основе статистической обработки результатов экспериментальных исследований, опубликованных в зарубежной литературе до 1965 г.

(1.9)

Целью проверки устойчивости топливного бака жидкостной ракеты является определение работоспособности корпуса бака при действии внешних нагрузок, вызывающих продольное сжатие цилиндрической оболочки бака. В соответствии с нормами прочности надежность конструкции будет обеспечена, если ее несущая способность, с учетом влияния нагрева на критические напряжения sкр, будет равна или больше расчетной величины приведенной осевой нагрузки, т.е. будет выполнено условие, определяющее запас устойчивости по несущей способности

, (1.10)

Расчетная несущая способность N p определяется с учетом коэффициентов безопасности f:cогласно выражения (1.5),

Расчет запаса устойчивости цилиндрической оболочки топливного бака может быть выполнен путем сравнения напряжений

(1.12)

где s 1р - расчетная величина продольных (меридиональных) напряжений сжатия

Аэродинамический нагрев конструкции ракеты

Нагрев поверхности ракеты во время ее движения в плотных слоях атмосферы с большой скоростью. А.н. – результат того, что налетающие на ракету молекулы воздуха тормозятся вблизи ее корпуса. При этом происходит переход кинетической энергии относительного движения частиц воздуха в тепловую.

Если полет совершается со сверхзвуковой скоростью, торможение происходит, прежде всего, в ударной волне, возникающей перед носовым обтекателем ракеты. Дальнейшее торможение молекул воздуха происходит непосредственно у самой поверхности ракеты, в т.н. пограничном слое. При торможении молекул воздуха их тепловая возрастает, т.е. температура газа вблизи поверхности повышается. Максимальная температура, до которой может нагреться газ в пограничном слое движущейся ракеты, близка к т. н. температуре торможения: T0 = Тн + v2/2cp, где Тн – температура набегающего воздуха; v – скорость полёта ракеты; cp - удельная теплоёмкость воздуха при постоянном давлении.

Из областей газа с повышенной температурой тепло передаётся движущейся ракете, происходит ее А.н. Существуют две формы А.н. – конвективная и радиационная. Конвективный нагрев – следствие передачи тепла из внешней, «горячей» части пограничного слоя к корпусу ракеты. Количественно удельный конвективный тепловой поток определяют из соотношения: qk = ? (Те - Тw), где Te – равновесная температура (температура восстановления – предельная температура, до которой могла бы нагреться поверхность ракеты, если бы не было отвода энергии); Tw – реальная температура поверхности; ? – коэффициент теплоотдачи конвективного теплообмена, зависящий от скорости и высоты полёта, формы и размеров ракеты, а также от других факторов.

Равновесная температура близка к температуре торможения. Вид зависимости коэффициента? от перечисленных параметров определяется режимом течения в пограничном слое (ламинарный или турбулентный). В случае турбулентного течения конвективный нагрев становится интенсивнее. Это связано с тем обстоятельством, что, помимо молекулярной теплопроводности, существенную роль в переносе энергии начинают играть турбулентные пульсации скорости в пограничном слое.

С повышением скорости полёта температура воздуха за ударной волной и в пограничном слое возрастает, в результате чего происходит диссоциация и ионизация молекул. Образующиеся при этом атомы, ионы и электроны диффундируют в более холодную область – к поверхности тела. Там происходит обратная реакция (рекомбинация), идущая также с выделением тепла. Это даёт дополнительный вклад в конвективный .

При достижении скорости полёта порядка 5 км/сек температура за ударной волной достигает значений, при которых воздух начинает излучать. Вследствие лучистого переноса энергии из областей с повышенной температурой к поверхности ракеты происходит ее радиационный нагрев. При этом наибольшую роль играет излучение в видимой и ультрафиолетовой областях спектра. При полёте в атмосфере Земли со скоростями ниже первой космической скорости (8,1 км/сек) радиационный нагрев мал по сравнению с конвективным. При второй космической скорости (11,2 км/сек) их значения становятся близкими, а при скоростях полёта 13-15 км/сек и выше, соответствующих возвращению на Землю, основной вклад вносит уже радиационный нагрев, его интенсивность определяется удельным радиационным (лучистым) тепловым потоком: qл = ? ?0 Те4, где? – степень черноты корпуса ракеты; ?0 =5,67.10-8 Вт/(м2.К4) – коэффициент излучения абсолютно черного тела.

Частным случаем А.н. является нагрев ракеты, движущейся в верхних слоях атмосферы, где режим обтекания является свободномолекулярным, т. е. длина свободного пробега молекул воздуха соизмерима или даже превышает размеры ракеты.

Особо важную роль А.н. играет при возвращении в атмосферу Земли космических аппаратов и боевого оснащения управляемых баллистических ракет. Для борьбы с А.н. космические аппараты и элементы боевого оснащения снабжаются специальными системами теплозащиты.

Лит.: Львов А.И. Конструкция, прочность и расчет систем ракет. Учебное пособие. – М.: Военная академия им. Ф.Э.Дзержинского, 1980; Основы теплопередачи в авиационной и ракетной технике. – М., 1960; Дорренс У.Х., Гиперзвуковые течения вязкого газа. Пер. с англ. – М., 1966; Зельдович Я.Б., Райзер Ю.П., Физика ударных волн и высокотемпературных гидродинамических явлений, 2 изд. - М., 1966.

Норенко А.Ю.

Энциклопедия РВСН . 2013 .

Аэродинамический расчет является важнейшим элементом аэродинамического исследования ЛА или его отдельных частей (корпуса, крыльев, оперения, управляющих устройств). Результаты такого расчета используются при траекторных вычислениях, при решении задач, связанных с прочностью движущихся объектов, при определении летно-технических характеристик ЛА.

При рассмотрении аэродинамических характеристик можно использовать принцип расчленения характеристик на отдельные компоненты для изолированных корпусов и несущих поверхностей (крылья и оперение), а также их комбинации. В последнем случае аэродинамические силы и моменты определяются в виде суммы соответствующих характеристик (для изолированных корпуса, крыльев и оперения) и интерференционных поправок, обусловленных эффектами взаимодействия.

Аэродинамические силы и моменты можно определить с использованием аэродинамических коэффициентов.

По представлению полной аэродинамической силы и полного аэродинамического момента в проекциях на оси соответственно скоростной и связанной систем координат приняты следующие названия аэродинамических коэффициентов: - аэродинамические коэффициенты лобового сопротивления, подъемной боковой силы; аэродинамические коэффициенты моментов крена, рысканья и тангажа.

Приведенная методика определения аэродинамических характеристик является приближенной. На рисунке приведена схема ракеты, здесь L - длина ЛА, dм - диаметр корпуса ЛА, - длины носовой части, l-размах крыла с подфюзеляжной частью (Рис.1).

двигатель рулевой ракета летательный

Подъемная сила

Подъемная сила определяется по формуле

где - скоростной напор, - плотность воздуха, S - характерная площадь, (например, площадь поперечного сечения фюзеляжа), - коэффициент подъемной силы.

Коэффициент принято определять в скоростной системе координат 0xyz. Наряду с коэффициентом далее рассматривается и коэффициент нормальной силы, определяется в связанной системе координат.

Эти коэффициенты связаны между собой соотношением

Представляем ЛА в виде совокупности следующих основных частей: корпуса (фюзеляжа), передних (I) и задних (II) несущих поверхностей. При небольших углах атаки и углах отклонения несущих поверхностей зависимости и близки к линейным, т. е. могут быть представлены в виде

здесь и - углы отклонения передних и задних несущих поверхностей соответственно; и - значения и при; , - частные производные коэффициентов и по углам, и, взятые при.

Значения и у беспилотных ЛА в большинстве случаев близки к нулю, поэтому в дальнейшем они не рассматриваются. В качестве органов управления принимаются задние несущие поверхности.

Определение коэффициента

найдем производную:

При малых углах атаки и при, можно положить, тогда равенство (2) принимает вид. Представим нормальную силу ЛА в виде суммы трех слагаемых

каждое из которых выразим через соответствующий коэффициент нормальной силы:

Поделив равенство (3) почленно на и изъяв производную по, получим в точке 0

где; - коэффициенты торможения потока;

; ; - относительные площади частей ЛА.

Рассмотрим подробнее величины, входящие в правую часть равенства (4).

Первое слагаемое учитывает собственную нормальную силу фюзеляжа, и при малых углах атаки оно равно нормальной силе изолированного фюзеляжа (без учета влияния несущих поверхностей)



Что еще почитать